Biosynthesis of 3HP & Aconitic Acid from Biomass Pacific Northwest National Lab (PNNL) IP Commercialization Opportunity

Pacific Northwest National Lab (PNNL) Licensing & Commercialization Opportunity

Opportunity: PNNL has engaged Tradespace to approach select partners to commercialize biosynthetic production processes through co-development and IP licensing

Technology: PNNL has genetically modified fungi to produce 3HP or aconitic acid – key inputs for <u>biodegradable plastics</u> and <u>biocompatible materials</u>– using biomass instead of fossil fuels

Key Benefits of Aconitic Acid and 3HP Biosynthesis Method:

- Produces biodegradable & biocompatible end-products
- Useful as plasticizer for polymers, biomaterial, or natural flavoring
- No fossil fuels used in production
- Higher titer than other production methods

Opportunity Snapshot:

Available IP

- One Granted Patent (US10947548B2)
- Two Patent Applications
- Expertise & Data Package
- Access to Research Team

Maturity Level

• Synthesized in lab-scale reactor (10L)

Potential Partnership Models

Pacific Northwest National Lab Snapshot



Leading Department of Energy lab with focuses in chemistry, data analytics, life science, and technological innovation in energy resiliency and national security. Based in Richland, WA

Annual R&D Spend: \$1.01B

Staff: 4,722

PNNL Biosynthesis Expertise

• Deep expertise in fungal genetics

 Research staff includes leading expert in multiomics and proteomics

 Lead testing lab for the Agile Biofoundy – a DOE-wide biomanufacturing effort

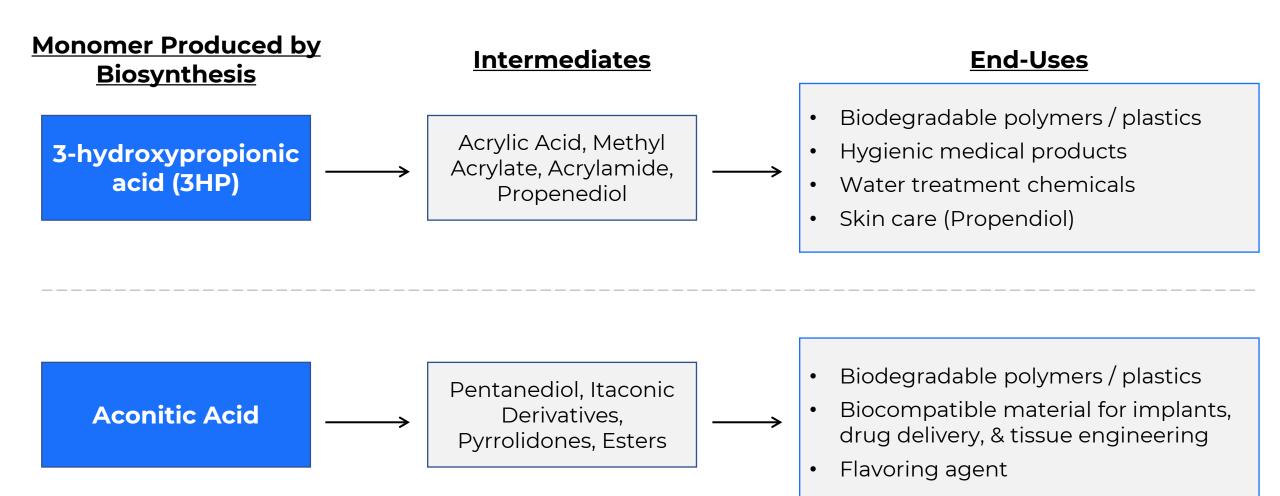
National Labs with Biosynthesis IP		
Rank	Organization	IP Strength
#1	Lawrence Livermore	75%
#2	Sandia National Lab	74%
#3	PNNL	72 %
#4	Oak Ridge National Lab	70%
#5	Idaho National Lab	63%
#6	Naval Research Lab	62%
#7	Army Research Lab	60%
#8	Argonne National Lab	58%
#9	NASA	52%
#10	Los Alamos National Lab	51%
#11	Brookhaven National Lab	49%
#12	Air Force Research Lab	38%
#13	Savannah River Nat'l Lab	36%

Why Use Fungi for Chemical Biosynthesis?

Biosynthesis Overview: Multi-step, enzyme-driven process for converting low-value feedstock into valuable chemicals using living organisms like fungi, bacteria, or yeast

Benefits

- Low Cost: Can leverage low-cost, readily available feedstocks like biomass (Lignocellulosic)
- **High Titer:** Can result in significantly higher yields than bacteria- or yeast-based approaches
- **Existing Infrastructure:** Fungi-based biosynthesis is already widely used for other chemical synthesis processes
- Simpler Fermentation Process: Can tolerate low pH; free-acid is easier for separation


biosynthetic production of 3HP

& Aconitic Acid

Use-Cases for Monomers Produced by PNNL's Biosynthesis Process

Technology Overview: Biosynthesis of 3HP and Aconitic Acid using Aspergillus Fungi

IP Snapshot

Patents: 1 Granted Patent; 1 Application; 1 Divisional Application

Geography: US

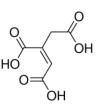
Research Team Available: Yes

Technical Data Package: Yes

IP Availability: Patent License; Collaborative R&D; Sponsored Research

Technology Maturity Level

• Synthesized in lab-scale (10L) bioreactor


Technology Description

US10947548B2

Genetically-modified, recombinant *Aspergillus pseudoterreus* fungi capable of producing aconitic acid or 3-hydroxypropionic acid (3HP) at high concentrations and high selectivities from low-cost biomass feedstocks.

но он

3-hydroxypropionic acid (3HP)

Aconitic Acid

Key Technical Features & Benefits

- High-Titer (Concentration):
 - 3HP: 40g/L (3X increase from unmodified Aspergillus fungi)
 - Aconitic Acid: 50g/L
- Environmentally-Friendly: Biodegradable (& biocompatible) alternative to producing polymers with fossil fuels
- Low pH: Does not require additives to maintain neutral pH (which would increase cost)
- Industrially-Relevant Fungi: *Aspergillus spp.* Already used for producing small molecules and enzymes in large bioreactors (e.g., 100,000L airlift reactors)
- AI / ML: Tools for genetic modification use ML models that significantly reduce time for further genetic modification of aspergillus or other fungi

tradespace

Pacific Northwe

Engagement Opportunities

Tradespace has been engaged to facilitate industry collaboration and technology transfer for PNNL's IP covering biosynthesis of 3HP and Aconitic Acid using *aspergillus*

Potential collaboration models include:

- Patent License
- Cooperative Research and Development Agreements (CRADAs)
- Sponsored Research
- Collaborative Research

Please contact Alec Sorensen, CEO of Tradespace, for further information regarding the opportunity

Contact: Alec Sorensen CEO Tradespace <u>alec@tradespace.io</u> 804-836-7938

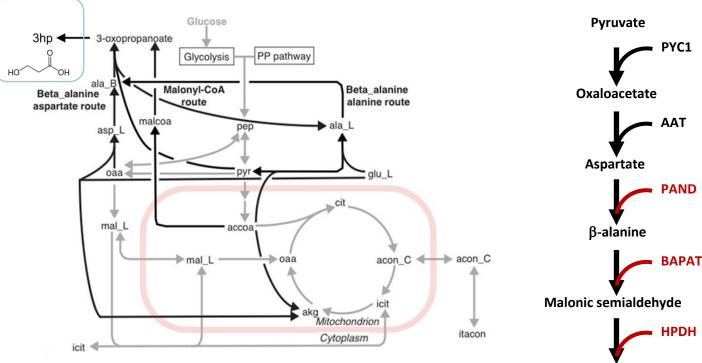
Appendix: Overview of *aspergillus* Biosynthesis Process

tradespace

Fungi Overview:

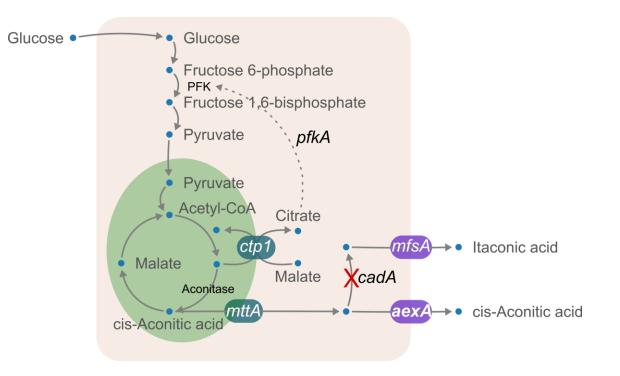
Aspergillus pseudoterreus & Aspergillus niger

- Industrially Relevant: Used for producing commodity fuels, chemicals, and enzymes in large bioreactors
 - e.g., citric acid in 100,000L airlift reactors, ~3M ton market
- **Genetically tractable:** Genome sequenced, genome scale metabolic model developed
- High flux through glycolysis toward TCA cycle derived organic acids
 - E.g., A. pseudoterreus ATCC 32359 makes 60 g/L itaconic acid
- Grows and produces at pH 1-3, hence it produces acids, not salts
 - Separations: High titer, free acid, crystallization possible
 - Does not require lime to maintain neutral pH, sulfuric acid for post process acidification, which generates gypsum waste



- Intermediate to acrylic acid & acrylonitrile
- Heterologous pathway (prokaryotic)
- **Beachheads:** Pyruvate, oxaloacetate
- PNNL has complimentary portfolio of acrylonitrile IP

Biosynthetic pathway for 3HP production from biomass feedstock


3-hydroxypropionic acid (3HP)

- A 6-carbon tricarboxylic acid, like citric acid
- Beverage acidulant, industrial chelator/modifier (cement) etc.
- Central metabolite with transport limitations
- Beachheads: Pyruvate, oxaloacetate, acetyl-CoA

Biosynthetic pathway for aconitic acid production from biomass feedstock

